1. МЕТОДИКА РАСЧЕТА МЕТОДОМ СВЕТОВОГО ПОТОКА.

Учитывая заданные по варианту характеристики зрительной работы (наименьший размер объекта различения, характеристика фона и контраст объекта различения с фоном), с помощью табл. 6 определяют разряд и подразряд зрительной работы, а также нормируемый уровень минимальности освещенности на рабочем месте. Распределяют светильники и определяют их число.

Равномерное освещение горизонтальной рабочей поверхности достигается при определенных отношениях расстояния между центрами светильников L, м (L=1,75 H) к высоте их подвеса над рабочей поверхностью H_p , м (в расчетах H_p =H).

Число светильников с люминисцентными лампами (ЛЛ), которые приняты во всех вариантах в качестве источника света.

$$\mathbf{S} \\
\mathbf{N} = \mathbf{\dots} \\
\mathbf{LM}$$

 Γ де S – площадь помещения, M^2 ; M – расстояние между параллельными рядами, м.

В соответствии с рекомендациями:

$$M \ge 0.6 H_p \tag{19}$$

Оптимальное значение М=2...3 м.

Для достижения равномерной горизонтальной освещенности светильники с ЛЛ рекомендуется располагать сплошными рядами, параллельными стенам с окнами или длинным сторонам помешения.

Для расчета общего равномерного освещения горизонтальной рабочей поверхности используют метод светового потока, учитывающий световой поток, отраженный от потолка и стен [2].

$$\Phi = \frac{\text{Eh S Z K}}{N\eta} \tag{20}$$

Где En- нормированная минимальная освещенность, лк; Z – коэффициент минимальной освещенности; Z = E cp /E мин, для ламп ЛЛ Z =1,1; K – коэффициент запаса; η – коэффициент использования светового потока ламп (η зависит от КПД и кривой распределения силы света светильника, коэффициента отражения от потолка и ρ n ρ c , высоты подвеса светильников над рабочей поверхностью H и показателя помещения i). Показатель помещения:

$$AB \ i = ---- , \ H_{D}(A+B) \$$

Где А и Б – соответственно длина и ширина помещения, м.

Значения коэффициента запаса от характеристики помещения: для помещений с большим выделением тепла K = 2, со средним K = 1.8, с малым K = 1.5 [2].

Значения коэффициента использования светового потока [2] приведены ниже в таблице 6:

Таблица 6. Значения коэффициента использования светового потока.

	1 1				
Показатель поме- щения	1	2	3	4	5
Коэффициент использования светового потока п	0,280,46	0,340,57	0,370,62	0,390,65	0,400,66

По полученному значению светового потока с помощью табл. 2 подбирают лампы, учитывая, что в светильнике с ЛЛ может быть больше одной лампы, т. е. n

может быть равно 2 или 4. В этом случае световой поток группы ЛЛ необходимо уменьшить в 2 или 4 раза [2].

Световой поток выбранной лампы должен соответствовать соотношению

$$\Phi$$
 л. расч. = (0,9...1,2) Φ л. табл., (22)

где Φ л. расч. - расчетный световой поток, лм; Φ л. табл. - световой поток, определенный по таблице 2., лм.

Потребляемая мощность, Вт, осветительной установки:

$$P = pNn$$
 (23)

где p - мощность лампы, $B\tau$; N - число светильников, $m\tau$.; n - число ламп в светильнике; для ЛЛ n=2.4.

Порядок расчета по методу светового потока:

- 1. Ознакомиться с методикой расчета.
- 2. Определить разряд и подразряд зрительной работы, нормы освещенности на рабочем месте, используя данные варианта (табл. ---) и нормы освещенности (см. табл. ---).
 - 3. Рассчитать число светильников.
- 4. Распределить светильники общего освещения с ЛЛ по площади производственного освещения.
- 5. Определить световой поток группы ламп в системе общего освещения, используя данные варианта и формулу (20).
- 6. Подобрать лампу по данным табл. 2 и проверить выполнение условия соответствия $\Phi_{\pi.\ pacч.}$ и $\Phi_{\pi.\ raб\pi.}$
 - 7. Определить мощность, потребляемую осветительной установкой.

2. МЕТОД РАСЧЕТА ПО УДЕЛЬНОЙ МОЩНОСТИ.

Удельной мощностью $P_{y_{\text{д}}}$ называется отношение суммарной мощности всех ламп, установленных в данном помещении, к площади освещаемой поверхности пола (BT/м²):

$$\mathbf{P}_{\mathbf{v}\mathbf{I}} = \mathbf{N} \cdot \mathbf{P}_{\mathbf{I}} / \mathbf{S} \tag{24}$$

Метод применяется для приблизительной оценки правильности произведенного светотехнического расчета OY. В основу расчета по удельной мощности положен метод K_u .

Световая отдача лампы (лм/Вт):

$$\omega = \Phi_{\pi} / P_{\pi}. \tag{25}$$

Отсюда:

Решив это уравнение относительно $N^* \ P_{\scriptscriptstyle \Pi,}$ и разделив обе части уравнения на площадь S, получим:

$$N^* P_{\pi} = E_{\text{норм}} * K_{3an} * Z$$
 (27)
 $S = \omega * \eta$

330100 «Безопасность жизнедеятельности в техносфере» КУРДЮКОВА Е.А.

увеличить или уменьшить во столько раз, во сколько нормируемая освещенность для данного помещения больше или меньше 100 лк.

Порядок расчета по методу удельной мощности:

Для ламп накаливания:

- 1. Выбирают тип светильника и расчетную высоту его подвеса;
- 2. При светильниках с лампами накаливания намечают наивыгоднейшее число светильников $N_{\rm cs}$;
- 3. В зависимости от величины нормируемой освещенности $E_{\text{норм.}}$, площади освещаемого помещения S, расчетной высоты подвеса $h_{\text{расч}}$ и коэффициентов отражений по соответствующей таблице находят удельную мощность $P_{\text{уд.}}$, определяют суммарную установленную мощность ламп ($P_{\text{уст.}} = P_{\text{уд.}} * S$) и мощность одной лампы ($P_{\pi} = P_{\text{уст.}} / N$).
- 4. При светильниках с люминисцентными лампами порядок расчета несколько изменяется, т.к. заранее известна мощность ламп в каждом светильнике. Поэтому после определения мощности осветительной установки ($P_{\text{уст.}} = P_{\text{уд.*}} S$) определяют число светильников $N_{\text{св}} = P_{\text{уст.}}/(N^* P_{\text{л}})$, где N число ламп в светильнике.

Таблица 7. Удельная мощность для группы светильников в зависимости от высоты подвеса.

Расчетная высота подвеса светильника, $h_{\text{pac}^{\text{u}}}$, м		Удельная мощность (Bт/м²) для группы светильников с лампами типов (ρ_n = 70%, ρ_c = 50%, ρ_{pacq} = 10%, K_{aan} = 1,5; z =1,1)							
	Площадь S, м ²	ЛБ-40, 65	ЛД-40, ЛБ-80; ЛХБ-40, 65; ЛТ-40, 65	ЛХБ-80; ЛТБ-80; ЛД-65; ЛДЦ-40	лд-80; лдц-65; лдц-80				
2-3	$ \begin{array}{r} 10 - 15 \\ 15 - 20 \\ 25 - 50 \\ 50 - 150 \\ 150 - 300 \\ > 300 \end{array} $	10,1 8,5 7 5,7 5,1 4,5	11,6 9,6 8 6,7 6 5,4	13,2 10,8 9,1 7,7 6,7 6,3	15,5 12,9 10,4 8,8 7,8 7,2				
3 - 4	$ \begin{array}{r} 10 - 15 \\ 15 - 20 \\ 20 - 30 \\ 30 - 50 \\ 50 - 120 \\ 120 - 300 \\ > 300 \end{array} $	14,4 11,4 9,9 8,3 6,8 5,6 4,5	17,6 13,4 11,4 9,6 7,8 6,6 5,4	19 15 12,9 10,8 8,9 7,6 6,3	23 17,6 15 12,7 10,2 8,7 7,2				

3. РАСЧЕТ ОСВЕЩЕНИЯ ТОЧЕЧНЫМ МЕТОДОМ.

Точечный метод в отличие от метода коэффициента использования позволяет определить освещенность любой точки на рабочей поверхности, как угодно расположенной в пространстве. В практике применяют наиболее распространенный способ расчета по пространственным кривым равной освещенности (изолюксы). Эти кривые построены для различных типов стандартных светильников с условной лампой в 1000 лм в прямоугольной системе координат в зависимости от высоты подвеса светильника $h_{\text{расч}}$ и расстояния d проекции светильника на горизонтальную поверхность до заданной точки.

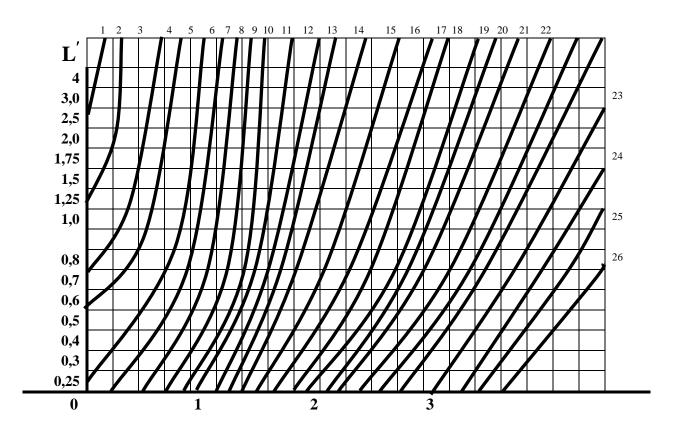


Рисунок 3. Линейные изолюксы для светильников 4 группы (ЛДОР, ПВЛМ, ЛСП 02).

Таблица 8. Значения изолюкс.

1.	2.	3.	4.	5.	6.	7.	8.	9.	10.	11.	12.	13.
160	150	120	100	70	50	40	30	25	20	15	12	10
14.	15.	16.	17.	18.	19.	20.	21.	22.	23.	24.	25.	26.
7	5	4	3	2,5	2	1,5	1,2	0,7	0,5	0,56	0,4	0,3

Порядок расчета по точечному методу:

Для ламп накаливания:

1. По кривым для усредненного светильника ППР в зависимости от высоты подвеса светильника $h_{\text{расч}}$ и расстояния d, определенного по плану, для каждого значения находят близлежащую кривую, на которой указана условная освещенность. По найденным кривым условные освещенности от различных светильников для расчетной точки суммируются:

$$\sum e_r = e_{r1} + e_{r2} + \dots + e_{rn}$$
 (28)

2. Если установленные светильники однотипны с лампами накаливания одинаковой мощности, значение светового потока одной лампы при заданной освещенности E_r определяют как

$$\Phi_{\rm n} = 1000 \; {\rm E_r} \; {\rm K_{3an}} / \; (\mu \sum e_{\rm r}),$$
 (29)

 $_{\rm где}$ μ - коэффициент, учитывающий дополнительную освещенность в заданной точке от удаленных светильников, не учтенных при определении $\sum e_{\rm r}$, и от отражения стен, потолка и расчетной поверхности помещения, $\mu = 1$ -1,2.

Для люминесцентных ламп:

- 1. При определении освещенности в заданной преподавателем точке по линейным изолюксам (рис. 5) необходимо найти относительные размеры: p' = p/h и L' = L/h, где p- расстояние от заданной точки до перпендикуляра, опущенного на расчетную плоскость из конца светящейся линии (сплошного ряда светильников), L- длина ряда (рис. 6).
- 2. Если заданная точка не лежит против конца ряда светильников, то его делят на две части или дополняют условным отрезком, после чего относительные освещенности суммируют или вычитают, как показано на рис. 4

Рисунок 4. Схема к расчету освещенности точки от светящейся полосы.

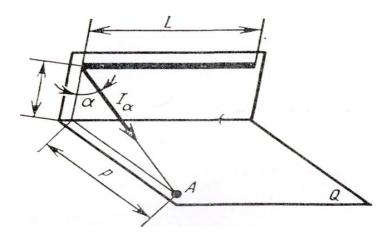
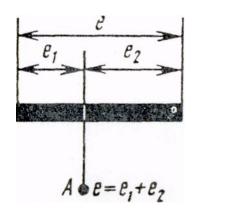
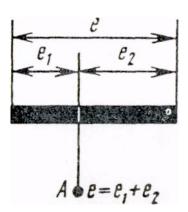




Рисунок 5. Схема расчета освещенности для точек, не лежащих в конце светящейся полосы.

3. При общем равномерном освещении в концах ряда освещенность имеет наименьшую величину. Если вблизи торцовых стен не производят работ, то некоторым уменьшением освещенности по сравнению с нормируемой $E_{\text{норм}}$ можно пренебречь. Если для данного помещения необходимо получить нормируемую освещенность $E_{\text{норм}}$ и в конце ряда, то либо продлевают ряд, либо в конце его удваивают число ламп. Если заданная точка освещается несколькими рядами, то значение e суммируется для всех рядов $\sum e$. Плотность светового потока (лм/м) определяется из выражения

$$\Phi_{\text{ряда}}^{\prime} = \Phi_{\text{ряда}}^{\prime} / L \tag{30}$$

4. Полный световой поток ламп ряда (лм)

$$\Phi_{\text{ряда}} = \Phi_{\text{ряда}}^{\prime} / L \tag{31}$$

«БЕЗОПАСНОСТЬ ТРУДА»

330100 «Безопасность жизнедеятельности в техносфере» КУРДЮКОВА Е.А.

5. Необходимую плотность светового потока ламп в ряду $\Phi^{\ /}_{\text{ряда}}$ при заданной величине освещенности E, коэффициента запаса $K_{\text{зап}}$ и коэффициента μ , учитывающего отражение поверхностей помещения, находят по формуле

$$Φряда = 1000 E Kзап h/(μΣe)$$
(32)

$$N_{cB} = \Phi_{pg,pg} / \Phi_{cB}$$
 (33)

7. Выполнить расчеты и оформить отчет по лабораторной работе.

Контрольные вопросы:

- 1. Какие величины относятся к основным показателям, характеризующим свет?
- 2. Назовите виды и системы освещения.
- 3. Какие вы знаете современные источники света?
- 4. В чем заключается принцип действия этих источников?
- 5. Каков принцип нормирования искусственного освещения?
- 6. какие основные методы расчета применяются и в каких случаях?
- 7. В чем заключается расчет освещения по методу коэффициента использования?
- 8. В чем заключается метод расчета по удельной мощности?
- 9. В чем заключается метод точечного расчета?

ЛИТЕРАТУРА

- 1. Безопасность жизнедеятельности / С.В. Белов, А.В.. Ильницкая, А.Ф. Козьяков и др.; Под общ. Ред. С.В. Белова. М.: Высшая школа, 1999. 448 с.
- 2. Гетия И.Г., Леонтьева И.Н., Кулемина Е.Н., Проектирование вентиляции, кондиционирование воздуха, искусственного и естественного освещения в помещении ВЦ. М.: МГАПИ, 1996. 32 с.
- 3. СниП 23-05-95. Строительные нормы и правила. Нормы проектирования. Естественное и искусственное освещение. М.: Стройиздат, 1996.
 - 4. Кнорринг Г.М. Осветительные установки. Л.: Экергоиздат, 1981, с.380.
- 5. Справочная книга по светотехнике. Под ред. Ю.Б. Айзенберга. М.: Энергоатомиздат, 1983, с.730.

«БЕЗОПАСНОСТЬ ТРУДА» 330100 «Безопасность жизнедеятельности в техносфере» КУРДЮКОВА Е.А.

Приложение 2.

Таблица 9. Нормы проектирования искусственного освещения .

	наменьший Разряд п				2000	Освещенность		
Характери- стика зри- тельной работы	размер объекта различения, мм	газряд зритель- ной работы	Подразряд зрительной работы	Контраст объекта с фоном	Характеристика фона	Комбинирован- ное освещение	Общее освещение	
Наивысшей точности	Менее 0,15	I	А Б В	Малый « средний малый средний большой средний большой «	Темный Средний Темный Светлый средний Темный Светлый « средний	5000 4000 2500 1500	1500 1250 750 400	
Очень высокой точности	0,15 -0,3	II	А Б В	Малый « средний малый средний большой средний большой «	Темный Средний Темный Светлый средний Темный Светлый « средний	4000 3000 2000 1000	1250 750 500 300	
Высокой точности	0,3 -0,5	III	А Б В Т	Малый « средний малый средний большой средний большой «	Темный Средний Темный Светлый средний Темный Светлый « средний	2000 1000 750 400	500 300 300 200	

«БЕЗОПАСНОСТЬ ТРУДА» 330100 «Безопасность жизнедеятельности в техносфере» КУРДЮКОВА Е.А.

Приложение 3.

Табл. 10. Характеристика люминесцентных ламп.

Тип лампы	Мощность, ВТ	Номинальный световой поток, лм
ЛБ 20	20	1200
ЛБ 18*	18	1250
ЛХБ 20	20	935
ЛТБ 20	20	975
ЛД 20	20	920
ЛДЦ 20	20	820
ЛДЦ 18*	18	850
ЛЕЦ 20	20	865
ЛЕЦ 18*	18	850
ЛБ 30	30	2100
ЛХБ 30	30	1720
ЛТБ 30	30	1720
ЛД 30	30	1640
ЛДЦ 30	30	1450
ЛЕЦ 30	30	1400
ЛБ 40	40	3200
ЛБ 36	36	3050
ЛХБ 40	40	2600
ЛТБ 40	40	2580
ЛД 40	40	2340
ЛДЦ 40	40	2200
ЛДЦ 36	36	2200
ЛЕЦ 40	40	2190
ЛЕЦ 36	36	2150
ЛБ 65	65	4800
ЛБ 58*	58	4870
ЛХБ 65	65	3820
ЛТБ 65	65	3980
ЛД 65	65	3570
ЛДЦ 65	65	3050
ЛЕЦ 65	65	3400
ЛЕЦ 58*	58	3400
ЛБ 80	80	5220
ЛХБ 80	80	440
ЛТБ 80	80	4440
ЛД 80	80	4070
ЛДЦ 80	80	3560

«БЕЗОПАСНОСТЬ ТРУДА»

330100 «Безопасность жизнедеятельности в техносфере» КУРДЮКОВА Е.А.

Варианты заданий

К лабораторным занятиям по теме «Расчет общего искусственного освещения».

Вари		Координаты точки для	Габаритные размеры помещения,м			Наи- меньший	Контраст	Характе-	Характеристика
ант	Производственное помещение	проверки освещенности	Длина А	Шири- на В	Высота Н	объект различе- ния	объекта разли- чения с фоном	ристика фона	помещения по условиям среды
01	Вычислительный центр, машинный зал	X = 5, y = 7, h = 2 M	45	20	5	0,4	Малый	Светлый	Наибольшая запыленность
02	То же	X = 30, $y = 20$, $h = 3$	30	25	5	0,45	Средний	Средний	То же
03	Дисплейный зал	X = 27, y = 18, h = 2	45	25	5	0,35	Малый	«	«
04	То же	X = 14, y = 24, h = 3	35	30	5	0,32	Большой	Темный	
05	Архив хранения носителей информации	X = 17, $y = 9$, $h = 3$	35	18	5	0,5	Средний	Светлый	«
06	Лаборатория технического об- служивания ЭВМ	X = 5, $y = 11$, $h = 2$	25	12	5	0,31	«	Средний	«
07	Аналитическая лаборатория	X = 3, y = 5, h = 1,5	15	10	5	0,48	«	«	«
08	Оптическое производство; участок подготовки шихты	X = 59, $y = 26$, $h = 2$	66	32	5	0,49	Большой	«	Большая запыленность
09	Участок варки стекла	X = 7, $y = 14$, $h = 3$	40	24	8	0,5	Средний	Светлый	Небольшая запыленность
10	Механизированный участок по- лучения заготовок	X = 20, $y = 10$, $h = 2$	48	14	8	0,5	«	«	То же
11	Участок шлифовальных станков	X = 45, $y = 20$, $h = 2$	60	28	6	0,4	Большой	«	Небольшая запыленность, высокая влажность
12	Участок полировальных станков	X = , y = , h =	50	24	6	0,38	Средний	«	То же
13	Механический цех; металлоре- жущие станки	X = 46, $y = 12$, $h = 3$	70	44	6	0,28	«	«	Небольшая за- пыленность
14	Прецизионные металлообраба- тывающие станки	X = 37, $y = 21$, $h = 2,5$	46	28	5	0,3	«	«	То же
15	То же	X = 31, $y = 11$, $h = 2$	64	22	5	0,35	Большой	Средний	«
16	Станки с ЧПУ	X = 25, $y = 17$, $h = 2$	50	34	5	0,2	Средний	Светлый	«
17	Автоматичесие линии	X = 60, $y = 25$, $h = 3$	60	30	5	0,34	Большой	«	«
18	Инструментальный цех	X = 4, $y = 15$, $h = 1,2$	40	28	5	0,18	Средний	«	«
19	Инструментальный цех	X = 28, y = 35, h = 1,2	59	40	6	0,23	Большой	Средний	Небольшая

Таблица 11

«БЕЗОПАСНОСТЬ ТРУДА» 330100 «Безопасность жизнедеятельности в техносфере» КУРДЮКОВА Е.А.

									запыленность
20	Участок сборки	X = 25, y = 13, h = 1,5	50	18	6	0,25	«	Светлый	«
21	То же	X = 25, y = 17, h = 1,5	60	34	5	0,28	«	Средний	«
22	Производство печатных плат, гальванический цех: ванны (травление, мойка, металлопокрытие)	X = 33, $y = 18$, $h = 2$	56	28	8	0,45	«	«	Высокая влаж- ность, неболь- шая запылен- ность
23	Автоматические линии металло-покрытий	X = 34, $y = 27$, $h = 2$	60	34	7	0,48	Средний	«	Небольшая запыленность, высокая влажность
24	Участок контрольно- измерительных приборов	X = 2, y = 9, h = 1	14	12	5	0,46	«	Светлый	Небольшая запыленность
25	Рабочие места ОТК с визуальным контролем качества изделий	X = 6, $y = 8$, $h = 1,5$	24	10	4	0,2	Большой	«	То же
26	Участок сварки	X = 35, $y = 10$, $h = 2$	40	12	7	0,4	Средний	«	Средняя запыленность
27	Участок контроля сварных со- единений	X = 22, $y = 10$, $h = 1,5$	48	12	4,5	0,35	Большой	Средний	Небольшая запыленность
28	Участок импульсно-дуговой сварки	X = 14, $y = , h =$	65	17	8	0,4	Средний	Светлый	Средняя запыленность
29	Участок автоматизированных установок	X = 38, $y = 13$, $h = 3$	56	24	7	0,45	Большой	Средний	То же
30	лаборатория для металлографи- ческих исследований	X = 12, $y = 7$, $h = 2.5$	30	12	5	0,49	Средний	«	Небольшая запыленность